Understanding Below Grade Waterproofing Systems and Design Options

Building Envelope Systems® is a registered trade mark of Henry Company

This presentation and all graphics are ©Copyright of Henry Company. All rights reserved.
Building Envelope Systems
North American Leader

Air Barrier Systems
Sheet, Liquid, Permeable, Non-permeable
Waterproofing Systems
Sheet, Hot Rubber, Fluid Applied Coatings
Roofing Systems
Vegetative, Cool Roofs, Maintenance Systems, modifiedPLUS®.
Mark Clyde, PMP
Henry Company Canada
Building Science Representative
mclyde@henry.com
416-577-4834
What We Do:

Henry products and systems manage the flow of water, air, vapour, and energy through the building envelope, from foundation to roof, improving the structure’s energy efficiency, livability, and sustainability for the benefit of owner, occupant and the environment.
A quick look at some industry definitions
Industry Definitions

Hydrostatic Head: The pressure at a given point in a liquid measured in terms of the vertical height of a column of the liquid needed to produce the same.

Dampproofing: An element that is designed and installed in an assembly to slow the passage of liquid water in the absence of hydrostatic head.

Waterproofing: An element designed to resist the passage of water in the presence of hydrostatic head.

Water Table: The surface below which all soil pores are filled with water, which is free to flow. It is the surface at which the pressure in the water is atmospheric. (Also known as groundwater level, free water elevation, and phreatic surface).

Capillary Rise: Continuous void spaces in soil behave as bundles of capillary tubes. Because of surface tension forces, water may rise above the phreatic surface.
Common Types of Waterproofing

+Positive Side Waterproofing
 o Membrane is on the exterior (hydrostatic side)
 o Is ‘pushed’ against the substrate by hydrostatic & backfill pressure

-Negative Side Waterproofing
 o Membrane is on the interior
 o Resists hydrostatic pressure through tenacious adhesion to substrate
 o Typically a cementitious slurry
+Positive Side Waterproofing

- Resists hydrostatic pressure
- Continuous system
- Reinforced transitions
- Handles substrate movement

Termed ‘positive side’ waterproofing
-Negative Side Waterproofing

- Does not protect substrate,
- Wrong side of Hydrostatic Pressure
- Water remains in the walls.
Why a waterproofing system is so critical to modern building design

“Nearly 66% of all condominium corporations have experienced damages caused by water infiltration"

“Of all environmental conditions, moisture poses the biggest threat to integrity and durability, accounting for up to 89% of damage in building envelopes.”
Cost of Failure Is High!
Why Waterproof?

- Basements are no longer simply “utility” & storage areas.
- “Lower levels” are usable space!
- Dry is good,
- Mould is bad!
Principles of Specifying a Water Tight Building Envelope System

1. Manage Water
2. Manage Drainage
3. Dampproofing or Waterproofing?
4. Address Thermal Component
5. Design as a System
Principle #1

Managing Water is First Priority!

“Of all environmental conditions, moisture poses the biggest threat to integrity and durability, accounting for up to 89% of damage in building envelopes.”

Sources of Water

- Surface water runoff
- Water table (ground water)
- Capillary rise in soils
Groundwater & Capillary Rise

The vertical movement of water due to surface tension.

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Saturation Zone</th>
<th>Capillary Rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>5.7 ft</td>
<td>11.5 ft</td>
</tr>
<tr>
<td>Silt</td>
<td>5.7 ft</td>
<td>11.5 ft</td>
</tr>
<tr>
<td>Fine Sand</td>
<td>4.5 ft</td>
<td>7.5 ft</td>
</tr>
<tr>
<td>Coarse Sand</td>
<td>2.2 ft</td>
<td>2.6 ft</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.0 ft</td>
<td>0.0 ft</td>
</tr>
</tbody>
</table>

* Justin Henshell, The Manual of Below-Grade Waterproofing Systems

"Can you hear that sucking sound?"
Principle #2

Winter snow melt and intense rain storms frequently raise the water table & bring more water than drainage systems can handle over the short term.

The water table is not a constant.
Drainage Composites Relieve hydrostatic pressure across entire surface and feed drainage system, offering better overall protection.
Principle #3

Definitions

Why waterproof

Principles

Components

Resources
Definition: **Dampproofing**

The treatment of a surface or structure to resist the passage of water in the absence of hydrostatic pressure\(^1\).

Justin Henshell, The Manual of Below-Grade Waterproofing Systems

Definition: **Waterproofing**

The treatment of a surface or structure to prevent the passage of water in the presence of hydrostatic pressure\(^1\).

Selection Criteria:

Presence of hydrostatic head caused by any combination of:

- Capillary Action & Soil type
- Water table
- Seasonal Variation
- Short, intense storms
- Water main breaks

- How critical is dry?
- What frequency of leaks can be tolerated?
Dampproofing or Waterproofing?

Dampproofing

Ground Water Level

Waterproofing

Capillary Rise

Ground Water Level
Principle #3

Address Thermal Component
Extruded Polystyrene Insulation is often used to:

- insulate exterior foundation surfaces
- provide membrane protection
- **Building Science**: Best to position insulation on cold side of waterproof vapour barrier, drainage outside of the insulation.
Principle #4

Design a full system:

- Waterstops
- Dampproofing or Waterproofing?
- Insulation
- Drainage
- Transition to above grade membrane
Transition to above grade membrane

Definitions
- Bluestone VP™: Self-adhered water-resistive air barrier system installed over exterior grade sheeting.
- BVP: Thru-Wall Flashing Membrane
- E850: BES System
- THW: Thru-Wall Flashing Sheet

Why waterproof
- To prevent water intrusion and protect the building from dampness.
- Ensures durability and longevity of the building components.

Principles
- Continuous insulation covered with vapor retarder.
- Finishing details for waterproofing and vapor retardation.
- Foul-inlet drain tile or Liquid Applied Waterproofing.

Components
- Bluestone VP™ Water Resistant Air Barrier Membrane
- Exterior sheeting
- Continuous insulation covered with vapor retarder
- Bluestone VP™ Thru-Wall Flashing Membrane
- Bluestone VP™ Thru-Wall Flashing Sheet
- Henry® BVP-31 Vapor Permeable Air Barrier Membrane
- Foul-inlet drain tile or Liquid Applied Waterproofing

Notes
1. Detail shows Bluestone VP™ self-adhered water-resistive air barrier system installed over exterior grade sheeting.
2. Bluestone VP™ self-adhered water-resistive air barrier system shall be installed so as to provide a continuous barrier to prevent air and water intrusion.
3. Penetrations of the air barrier system shall be sealed with Henry® E850 BES System to maintain the integrity of the air barrier system over the entire surface.
4. Refer to Henry® Bluestone VP™ Installation Guidelines for recommended installation procedures.

Resources
- Henry® Company
- Bluestone VP™ Self-Adhered Air Barrier
- Bluestone VP™ Thru-Wall Flashing Membrane
- E850 BES System
- THW Thru-Wall Flashing Sheet

Henry® Veneer/Steel Stud Wall
- AB-10B96
- Details:
 - Brick Veneer
 - Air Space
 - Bluestone VP™ 3A or TG
 - Bluestone VP™ Adhesives
 - Exterior Sheathing
 - Steel Studs
 - Cement Board
 - HE25 BES System
 - Mold Reduction Adhesive
 - THW Thru-Wall Flashing Sheet

Additional Notes
- Bluestone® VTW is a self-adhering water-resistive/thru-wall flashing application. Bluestone® VTW is to be applied to a prepared and primed substrate. Start upper edge of Bluestone® VTW with HE25 BES System or Polybutylene 50B2, if required.
- An alternate detail for the thru-well flashing includes extending the membrane across the top of the floor slab, and installing the lower drains. Turn membrane up face of brick prior to fastening interior system beams.
- When the floor slab system is installed prior to the Bluestone® SA, the membrane is cut, fitted, and sealed with Al-Kilox 21 adhesive prior to protection. A 50mm (2”) lip is needed over the film.
- It is recommended that the air-sealing barrier be the interior waterproofing or damp proof membrane.
A closer look at the components of a waterproofing system

✔ Waterstops
 • Dampproofing
 • Negative Side
 • Fluid Applied
 • Sheet Applied
 • Drainage medium
What is a Waterstop?

Waterstops are embedded in adjacent pours of concrete to prevent the passage of water from liquid-containing structures or through foundation walls and tunnels at non-moving construction joints.
Construction Joints/Cold Joints:
A cold joint is the intersection between concrete pours.
Cold joints are a weak area allowing the entry of water

- Footing to wall detail
- Slab on Grade to wall
- Continuous pour walls
- Stairwells/elevator pits

You Need a Waterstop!
Synkoflex is a self-sealing, non-swelling preformed joint sealant on both fresh and cured concrete surfaces.

Features:
- Eliminates split forming, wiring to rebar, heat welding of splices
- Unaffected by rain or moisture during installation
- Offers excellent chemical resistance
- Single component, self-sealing plastic adhesive compound,
- Bonds to cured concrete surfaces,
- Fuses with fresh concrete during hydration & curing

Uses:
- cold joints at footings, walls and slabs
- sealing pipes, sleeves, and collars
Preformed Adhesive Waterstops: Synkoflex

Synkoflex

| Thru wall Pipe Sleeve | Cold joint in wall at concrete pour interruption |

Definitions

Why Waterproof

Principles

Components

Resources
A closer look at the components of a waterproofing system

- Waterstops
- Dampproofing
- Negative Side
- Fluid Applied
- Sheet Applied
- Drainage medium
Dampproofing – 3 Traditional Options

<table>
<thead>
<tr>
<th>Non- Fibered</th>
<th>Fibered</th>
</tr>
</thead>
<tbody>
<tr>
<td>810-07</td>
<td>710-11</td>
</tr>
<tr>
<td>Solvent type, asphalt dampproofing.</td>
<td>Solvent-type, selected asphalts & fibres permitting application in thick films.</td>
</tr>
<tr>
<td>Features:</td>
<td>Features:</td>
</tr>
</tbody>
</table>
| • medium paint consistency | • bonds well to dry, frost-free masonry and concrete surfaces.
| • odourless, non-toxic, | • Can be applied at low temperatures. |
| • heavy brush consistency | **Uses:** |
| • damp & dry surfaces | • Masonry
| • Zero VOCs. | • Concrete. |
| **Uses:** | **Application:** |
| • Concrete | Brush, trowel or spray. |
| • Masonry | **Application:** |
| **Application:** | Brush, roller or spray. |
| Brush, roller or spray. | **Application:** |

- **700-01**
 - Vacuum-reduced asphalt in a mineral colloid emulsifier.
 - **Features:**
 - odourless, non-toxic,
 - heavy brush consistency
 - damp & dry surfaces
 - Zero VOCs.
 - **Uses:**
 - Concrete
 - Masonry
 - ICF
 - Preserved wood FDNs (PWF)
 - **Application:**
 - Brush, roller or spray.
A closer look at the components of a waterproofing system

• Waterstops
• Dampproofing
✓ Negative Side
• Fluid Applied
• Sheet Applied
• Drainage medium
Negative Side: U Seal

U-Seal: a breathable, heavy-bodied, cement-based waterproof finish.

Features
- Penetrates into the pores and voids of concrete & masonry
- Protects against water penetration, yet allows walls to breathe.
- Becomes a part of the surface to which it is applied
- Easy to mix, use and apply
- Will last as long as the structure

Uses:
- Potable water containment surfaces
- Swimming pools, cisterns, reservoirs, sewers, tunnels and parapet walls.
- Used on the positive or negative side of hydrostatic pressure, above or below grade, exposed or backfilled.
A closer look at the components of a waterproofing system

- Waterstops
- Dampproofing
- Negative Side
 - Fluid Applied
 - Sheet Applied
- Drainage medium
Advantages
• Seamless
• Excellent for complex situations
• Adhesion to irregular/rough substrates
• Quick coverage with spray applied
• Easily seals around penetrations

Considerations
• Mixing and Spray Equipment
• Thickness control
• Overspray
• Curing/Drying due to weather
• VOC
Sheet Applied Waterproofing

Advantages
• Manufacturer controlled thickness
• No mixing or special equipment
• Easily bridges gaps/cracks
• Broader applicator base
• Reinforced for improved damage resistance

Considerations
• Substrate preparation is required
• Requires fluid applied membrane around penetrations
• Application can be more difficult
• Lap sealing may be required
• Use pressure roller to ensure bond of pressure sensitive adhesive
Waterproofing Components

A closer look at the components of a waterproofing system

• Waterstops
• Dampproofing
• Negative Side
✓ Fluid Applied
• Sheet Applied
• Drainage medium
Aqua-Bloc 770-06 - one component elastomeric membrane.

Features:
• Single layer or reinforced, warm or cold weather application
• Heavy duty, seamless, rubber-like, impervious membrane
• Trowel applied to waterproof smaller areas
• Spray applied for larger productions
• Excellent adhesion
• CAN/CGSB-37-16, CAN/CGSB 37.58

Uses:
• tunnels, planters, mechanical rooms, reflective pools and foundation walls.
• repair 790-11 Rubberized Asphalt or modifiedPLUS

Application:
• trowel, brush or spray.
• ↑↓ vertical or ↔ horizontal
Aqua-Bloc 720-38 seamless, low modulus, elastomeric, fluid-applied, emulsified asphalt.

Features:
- Water-based and VOC Compliant
- Flexible over a wide temperature range
- Damp or green concrete
- 1 or multiple coats with Yellow Jacket 990-06
- Bridges cracks
- CAN/CGSB-37-2, ASTM D1227

Uses:
- Concrete & block
- Insulated concrete forms (ICF)
- Preserved wood foundations
- footings, split slab floors, and retaining walls.

Application:
- trowel, brush or spray.
- ↑ vertical or ↔ horizontal
Aqua-Bloc 720-33 elastomeric, emulsified asphalt membrane. Spray applied with a setting agent to achieve an immediate set through.

Features:
- Low VOCs and low odour
- Can be used on green concrete or ICFs
- Fast set through
- CAN/CGSB 37.1M

Uses:
- Designed for waterproofing foundations walls made of concrete, concrete block or ICF (insulated concrete forms).

Application: spray applied, Vertical ↑
CM100 fast setting, one component elastomeric, moisture cure. Heavy-duty "seamless" rubber-like, impervious membrane.

Features:
- Applied in a high build, two-ply system or single-ply
- Cold alternative to hot applied rubberized membrane
- Can be applied to damp or green concrete
- Excellent adhesion to concrete, stone, wood and metal
- High solids (97%)
- Solvent free (0%) - No odours
- Very fast cure (3 hours)
- Non flammable

Uses:
- Safe for use in confined or "hard to get at" applications
- Podium & plaza decks, tunnels, foundation walls, planters, and protected roof membrane assemblies.

Application: trowel, roller, squeegee or spray

↔ Horizontal or Vertical ↑
Fluid Applied: CM100

• CM100 Single Coat System
 • Planters
 • Foundation walls above water table
 • Non critical Applications

• CM100 High Build, Reinforced System
 • Podium decks
 • Split slabs
 • Protected membrane roofs
A closer look at the components of a waterproofing system

- Waterstops
- Dampproofing
- Negative Side
- Fluid Applied
- Sheet Applied
- Drainage medium
Sheet Applied Waterproofing - Thermoseal

Thermoseal is a heavy duty, torch applied modified bitumen sheet membrane

Used as a single ply waterproofing membrane for bridge decks, foundations, tunnels, wet rooms and plaza decks

Features:
- Asphaltic Pavement can be applied directly over Thermoseal without additional protection course
- Polyester reinforced for high strength and flexibility at all temperatures
- Excellent tear resistance
The Blueskin Family

Blueskin

Components

Air Barriers
- **Commercial**
 - BlueskinVP 160
 - Blueskin SA
 - Blueskin SALT
 - Blueskin SAHT
 - Blueskin TG
- **Residential**
 - BlueskinVP 100

Flashing
- **Commercial**
 - Blueskin TWF
 - Blueskin SA (Cut Rolls)
 - BlueskinVP (Cut Rolls)
- **Residential**
 - Blueskin WB

Roofing
- **Underlayments**
 - Blueskin PE200HT
 - Blueskin RF200
 - Blueskin RF200LT

Waterproofing
- **Self Adhered**
 - Blueskin WP200

Definitions

Why Waterproof

Principles

Resources
Blueskin WP 200 is a self-adhering composite membrane consisting of an SBS rubberized asphalt compound, integrally laminated to a blue, high-density polyethylene film.

Features:
• Flexible at low temperatures
• Fully adhered system, prevent lateral water movement
• Factory controlled thickness
• Negligible odour during application
• CCMC approval

Uses: ↔ Horizontal or Vertical ↑
- Concrete, block, PWF & ICF foundation walls, plaza decks, tunnels...
- Interior applications: mechanical rooms, laboratories & wet-rooms.
Four steps of Blueskin WP 200 Application

1. Prep
2. Prime
3. Apply
4. Protect
Step 1 - Prep

- Fill “bug holes” or “honeycomb”
- Remove sharp projections or fins
- Fill form tie holes
- Remove excess dirt and dust
Blueskin® WP 200

Step 2 Prime:
ICF:
✓ Aquatac® (good weather & drying conditions)
✓ HiTac® (cool weather – down to -12°C)

Concrete:
✓ Hi-Tac
✓ Aquatac,
✓ Blueskin® Adhesive
✓ Blueskin® LVC Adhesive
Step 3 Apply:
Polybitume 570-05
✓ Fillet bead
✓ Around projections
Step 3 Apply:
Blueskin WP200

✓ Vertical
✓ or Horizontal
✓ Orient laps to shed water!
Step 3: Apply - pressure

- Use a roller
- Roll entire surface!
Step 3 Apply:

Sealant

✓ Seal all non-edge bead laps & terminations with Polybitume® 570-05 or 925 BES sealant
✓ Also, seal any laps which don’t shed water!
Step 4 Protect:

- Install insulation
- Install Drainage Board
A closer look at the components of a waterproofing system

- Waterstops
- Dampproofing
- Negative Side
- Fluid Applied
- Sheet Applied

✔ Drainage medium
Prefabricated Drainage Composites

- Filter Fabric: Non-Woven Polypropylene.
- Core Board: Polypropylene.

Physical Properties
- High Flow Rates - 5690 L/min/m²
- High Compressive Strengths 11–15,000psf

Drain Board replaces 250 mm (10”) Stone!
Prefabricated drains consist of a three dimensional polymeric core that can be formed to different compressive strengths and flow capacities. A geotextile filter fabric is bonded to the dimple side to retain soil particles while allowing water to freely enter the drainage core. DB products are specific combinations of core and geotextiles based on the strength, flow and filter requirements required for the typical construction application.

WATER FLOW RATE:
The volume of water that passes through the formed core in a specific amount of time.

CORE COMPRESSION:
The maximum compressive stress the formed core can withstand without failure.

FILTER FABRIC:
The mechanical separation of soil particles from the water that enters the core.
Flow Capacity

Henry DB 9 gpm per ft - width

Garden Hose

5 Gallon Bucket

Henry DB (¼ “ core) can transport more water per foot of width than a garden hose at maximum flow.
Drain Design Considerations

Vertical Walls:
- Backfilled
- Retaining
- Lagging

Horizontal:
- Parking & Plaza Decks
- Split Slab
- Under Slab
- Planters

Perimeter Drain
Drain Board Selection

Physical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Bakor DB 2000</th>
<th>Bakor DB 6000</th>
<th>Bakor DB 6200</th>
<th>Bakor DB 9000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Grab Tensile</td>
<td>ASTM D-4632</td>
<td>0.44 KN</td>
<td>0.44 KN</td>
<td>0.44 KN</td>
<td>1.62 KN</td>
</tr>
<tr>
<td>- Puncture Strength</td>
<td>ASTM D-4833</td>
<td>0.29 N</td>
<td>0.29 N</td>
<td>0.29 N</td>
<td>0.47 N</td>
</tr>
<tr>
<td>- Trapezoidal Tear</td>
<td>ASTM D-4533</td>
<td>0.22 N</td>
<td>0.22 N</td>
<td>0.22 N</td>
<td>0.511 N</td>
</tr>
<tr>
<td>- Mullen Burst</td>
<td>ASTM D-3786</td>
<td>1482 kPa</td>
<td>1482 kPa</td>
<td>1482 kPa</td>
<td>3304 kPa</td>
</tr>
<tr>
<td>- Elongation</td>
<td>ASTM D-4632</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>24%</td>
</tr>
<tr>
<td>- AOS</td>
<td>ASTM D-4751</td>
<td>0.21 mm</td>
<td>0.21 mm</td>
<td>0.21 mm</td>
<td>0.42 mm</td>
</tr>
<tr>
<td>- Permittivity</td>
<td>ASTM D-4491</td>
<td>2.0 sec-1</td>
<td>2.0 sec-1</td>
<td>2.0 sec-1</td>
<td>1.36 sec-1</td>
</tr>
<tr>
<td>- Flow Rate</td>
<td>ASTM D-4491</td>
<td>5690 L/min/m²</td>
<td>5690 L/min/m²</td>
<td>5690 L/min/m²</td>
<td>3304 L/min/m²</td>
</tr>
<tr>
<td>- Material</td>
<td></td>
<td>Non-woven polypropylene</td>
<td>Non-woven polypropylene</td>
<td>Non-woven polypropylene</td>
<td>Woven polypropylene</td>
</tr>
<tr>
<td>Core Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Material</td>
<td>ASTM D-1777</td>
<td>Polypropylene</td>
<td>Polypropylene</td>
<td>Polypropylene</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>- Thickness</td>
<td></td>
<td>10 mm</td>
<td>10 mm</td>
<td>10 mm</td>
<td>10 mm</td>
</tr>
<tr>
<td>- Compressive Strength</td>
<td>ASTM D-1621</td>
<td>550 kN/m²</td>
<td>723 kN/m²</td>
<td>723 kN/m²</td>
<td>862 kN/m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,000 psf)</td>
<td>(15,100 psf)</td>
<td>(15,100 psf)</td>
<td>(18,000 psf)</td>
</tr>
<tr>
<td>Product Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Water Flow Rate (V)</td>
<td>ASTM D-4716</td>
<td>223L/min/m</td>
<td>223L/min/m</td>
<td>223L/min/m</td>
<td>334L/min/m</td>
</tr>
<tr>
<td>- Water Flow Rate (H)</td>
<td>ASTM D-4716</td>
<td>15.25 m (50 ft)</td>
<td>15.25 m (50 ft)</td>
<td>15.25 m (50 ft)</td>
<td>15.25 m (50 ft)</td>
</tr>
<tr>
<td>- Roll Length</td>
<td></td>
<td>1.83 m (6 ft)</td>
<td>1.83 m (6 ft)</td>
<td>1.83 m (6 ft)</td>
<td>1.83 m (6 ft)</td>
</tr>
<tr>
<td>- Roll Width</td>
<td></td>
<td>25 kg (56 lbs)</td>
<td>28 kg (63 lbs)</td>
<td>29 kg (64 lbs)</td>
<td>32 kg (70 lbs)</td>
</tr>
</tbody>
</table>
How can we help?
Blueskin® WP200
Self-Adhesive Waterproofing Membrane

Blueskin® WP 200 is a self-adhering composite membrane consisting of an SBS rubberized asphalt compound, integratedly laminated to a blue, high-density polyethylene film. The membrane is specifically designed for self-adhering to a prepared substrate, and provides a high-performance waterproofing barrier.

Features
- SBS membrane flexible at low temperatures
- Fully adhered systems prevent lateral water movement
- No flame required
- Factory controlled thickness
- Negligible odor during application
- Has CMC approval

Packaging
- Thickness - 60 mils (1.5 mm)
- Roll Length - 66 ft
Blueskin® WP200
Self-Adhesive Waterproofing Membrane

Specifications
Self-Adhering Waterproofing Membrane Guide Spec

Architectural Details
WP-10B98 Blueskin WP 200, Vent
WP-11B98 Blueskin WP 200, Projection
WP-12B98 Blueskin WP 200, Drain

About | Products | Resources | Customer Care | Contact Us
Technical Services

• Provide guidance on site on product application and technique, surface preparation, compatibility and building envelope transitions.
• Project start-up and mock-up review
• Trouble shooting
Building Science

- Specification
- Details
- Product Selection
- Trouble shooting
Building Envelope Systems
North American Leader

Air Barrier Systems
- Sheet, Liquid, Permeable, Non-permeable

Waterproofing Systems
- Sheet, Hot Rubber, Fluid Applied Coatings

Roofing Systems
- Vegetative, Cool Roofs, Maintenance Systems, modifiedPLUS®